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AFIT-ENG-14-M-74
Abstract

The ZigBee specification provides a niche capability, extending the IEEE 802.15.4

standard to provide a wireless mesh network solution. ZigBee-based devices require

minimal power and provide a relatively long-distance, inexpensive, and secure means of

networking. The technology is heavily utilized, providing energy management, Industrial

Control System (ICS) automation, and remote monitoring of Critical Infrastructure (CI)

operations; it also supports application in military and civilian health care sectors. ZigBee

networks lack security below the “Network” layer of the Open Systems Interconnect (OSI)

model, leaving them vulnerable to open-source hacking tools that allow malicous attacks

such as Media Access Control (MAC) spoofing or Denial of Service (DOS). A method

known as Radio Frequency Distinct Native Attribute (RF-DNA) Fingerprinting provides an

additional level of security at the Physical (PHY) level, where the transmitted waveform of

a device is examined, rather than its bit-level credentials which can be easily manipulated.

RF-DNA fingerprinting allows a unique human-like signature for a device to be obtained

and a subsequent decision made whether to grant access or deny entry to a secure network.

Two National Instruments (NI) receivers were used here to simultaneously collect

RF emissions from six Atmel AT86RF230 transceivers. The time-domain response of

each device was used to extract features and generate unique RF-DNA fingerprints.

These fingeprints were used to perform Device Classification using two discrimination

processes known as Multiple Discriminant Analysis, Maximum Likelihood (MDA/ML)

and Generalized Relevance Learning Vector Quantization-Improved (GRLVQI). Each

process (classifier) was used to examine both the Full-Dimensional (FD) and reduced

dimensional feature-sets for the high-value PCI Extension for Instrumentation Express

(PXIe) and low-value Universal Software Radio Peripheral (USRP) receivers. The

reduced feature-sets were determined using Dimensional Reduction Analysis (DRA) for
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both quantitative and qualitative subsets. Additionally, each classifier performed Device

Classification using a “hybrid” interleaved set of fingerprints from both receivers.

The FD feature-set used for Device Classification included NF=297 features. When

examining each single receiver seperately and averaging over both classifiers, FD analysis

achieved an arbitrary benchmark of average correct classification %C>90% (cross-device

average) at S NR≈11.0 dB and S NR≈16.0 dB for PXIe and USRP receivers respectively.

MDA/ML performed better for FD feature sets, with GRLVQI requiring S NR≈2.0 dB in

additional gain to match MDA/ML performance. DRA was used to evaluate performance

using both quantitatively (NF=5, 10, 33, 66, 99) and qualitatively (NF=99) reduced feature

sets. Quantitative DRA performance favored the PXIe receiver which consistently achieved

%C>90% at S NR≈12.0 dB for NF∈[10 297]. Qualitative DRA showed that irrespective

of the receiver used, the Phz-only feature-set outperformed the Frq-only and Amp-only

feature-sets. Additionally, when using FD NF=297 and NF=99 for both quantitative and

qualitative feature-sets, %CFD ≈ %C99Qnt ≈ %C99Phz. Finally, when developing a Hybrid

Cross-Receiver model using fingerprints from both receivers, testing with PXIe-only

fingerprints proved to be the most effective method for performing Device Classification.

Both classifiers performed better than in any other hybrid case, achieving the %C>90%

benchmark for NF∈[5 297] and NF∈[10 297] using GRLVQI and MDA/ML, respectively.
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A COMPARISON OF RF-DNA FINGERPRINTING USING HIGH/LOW VALUE

RECEIVERS WITH ZIGBEE DEVICES

I. Introduction

This chapter provides a brief introduction to the operationally motivated research of

the ZigBee protocol and its applications in Section 1.1. Additionally, Section 1.2

provides the technical motivation for using the Air Force Institute of Technology (AFIT)’s

Radio Frequency Distinct Native Attribute (RF-DNA) process. Specifically, Section 1.3

provides the current state of AFIT’s RF-DNA fingerprinting process based on previous

research [2–4, 6, 10, 11, 15, 20–23, 25–27, 29, 31–37, 39, 40, 45, 46] and advancements

from the contributions of this research [30]. Finally, a breakdown of the document

organization is presented in Section 1.4.

1.1 Operational Motivation

The Institue of Electrical and Electronics Engineers (IEEE) 802.15 standard provides

guidance for establishing a Wireless Personal Area Network (WPAN) [24]. WPAN pro-

vide a an effective way for anyone to establish a personal network to which a multitude

of wireless devices can be connected for buisness or home use. The ZigBee specification

provides a niche capability, quickly growing in popularity, within this standard as dictated

by IEEE standard 802.15.4 [48]. ZigBee provides a low energy, low cost alternative that

is relatively simple to set up. ZigBee devices also boast long battery life and the ability to

perform secure networking. For these reasons, ZigBee is used in many industries, includ-

ing commercial, military, and healthcare. Commercial industries [13, 43, 44] use ZigBee

for Industrial Control System (ICS) and building automation, energy management and the
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monitoring of critical infrastructure. The military has begun to utilize ZigBee for location

and positioning [10] while medical usage includes life-support and patient monitoring [5].

Given the strong probability that personal, critical, and even military national security in-

formation could traverse ZigBee networks on a day-to-day basis, the requirement for strong

network security remains high.

Wireless networks, such as ZigBee, all run off of the same basic premise of a seven

layer model known as the Open Systems Interconnect (OSI) model , shown in Fig. 1.1 [1].

The focus for security tends to rely soley on the “Network” and “Data Link” layers. This

basic security is where a network relies on device Media Access Control (MAC) or Internet

Protocol (IP) information to be submitted and verified as authorized prior to being allowed

into a network. There are various open source hacking tools that detect these mechanisms

by spoofing (replicating and presenting) specific device bit-level credentials and gaining

unauthorized network access. Once inside, a malicous device can perform various attacks

such as denial or service, network key sniffing, or hostile takeover of the whole network.

Of these hacking tools, there are a few that specifically target vulnerabilities of ZigBee

devices including KillerBee [47] and Api-Do [38].

This increasing threat to WPANs, specifically ZigBee, has constituted establishing

security at the most basic “Physical” level of the OSI model. This level deals with the

the actual physical waveform a device emits when it transmits or receives information.

Ongoing research at AFIT has attempted to establish a process known as RF-DNA

fingerprinting whereby a specific device can be described by features unique only to it.

A network can then use this prior-known information to compare to a device requesting

entry into the secure network, assess its bit-level credentials, and deem it as authorized or

unauthorized to enter. This process describes each device with a unique human-like RF
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signature that allows for highly accurate Device Classification and makes replication of or

faking identities very difficult. It is for this reason that additional RF-DNA security at the

“Physical” layer is important to supplement existing “Network” and “Data Link” security,

which may be easier to bypass.

Figure 1.1: Seven-layer Open Systems Interconnect (OSI) Network Model [1].

1.2 Technical Motivation

This RF-DNA process has gone through multiple generations of evolution and

currently stands as shown in Fig. 1.2 [9]. Each evolution of the process has incorporated

different classification and verification methods, model development techniques, as well as

introduced new receivers, signal types, and feature-sets. Each of these new or modified

methods and hardware have been specifically addressed through previous work at AFIT

[4, 6, 10, 11, 15, 20–23, 25–27, 29, 31–37, 39, 40, 45, 46], with the aim of supplementing

research conducted outside of AFIT as well [2, 3, 6–8, 14–17]. Previous work specifically
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on ZigBee has gone through one iteration [9], focusing mostly on Device Verification for a

single receiver generated model from collections in multiple locations. The research here

expands upon previous ZigBee work with the introduction of two new receivers, one of

few current efforts to provide an extensive comparison of classification methods, and a

first-look at generating a Hybrid Cross-Receiver model for use in Device Classification.

1.3 Previous vs. Current Research

Table 1.1 provides a summary of technical areas previously addressed in developing

AFIT’s RF-DNA process [2–4, 6, 10, 11, 15, 20–23, 25–27, 29, 31–37, 39, 40, 45, 46] and

areas addressed by this research [30].

1.4 Document Organization

The remainder of this document is organized as follows:

Chapter 2 gives basic IEEE 802.15.4 ZigBee signal structure and outlines specific

areas of interest as relevant to this research. Chapter 3 provides the research methodol-

ogy used to implement the RF-DNA fingerprinting process for ZigBee wireless devices.

Specifically discusses signal collection using a high-value and low-value receiver as well

as post-collection signal processing and subsequent RF-DNA fingerprint generation using

MATLAB. Finally, describes the Dimensional Reduction Analysis (DRA) process and de-

tails device discrimination techniques utilizing both Multiple Discriminant Analysis, Max-

imum Likelihood (MDA/ML) and Generalized Relevance Learning Vector Quantization-

Improved (GRLVQI) classification methods. Chapter 4 provides results and analysis for

both full-dimensional and DRA (qualitative and quantitative) Device Classification perfor-

mance for a single-receiver model. Additionally, a comparison of high-value versus low-

value receiver performance is provided for two Device Classification methods, MDA/ML

and GRLVQI. Finally, results and analysis is provided for both full-dimensional and quanti-
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Figure 1.2: AFIT RF-DNA Fingerprinting Process [9].
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tative DRA Device Classification using a Hybrid Cross-Receiver model for both MDA/ML

and GRLVQI processes. The document concludes with Chapter 5 that summarizes re-

search activity, highlights significant findings and provides recommendations for follow-on

research.

6



Table 1.1: Technical Areas in Previous related work and Current research contributions.
“×” denotes areas addressed.

Technical Area Previous Work Current Research

Ref # Addressed Ref #

1D Time Domain (TD)
[6, 15, 25, 26, 40, 45]

× [30]
[9–11, 39, 40, 45, 46]

1D Spectral Domain (SD) [35, 46]

2D Wavelet Domain (WD) [25–27]

2D Gabor (GT/GWT) [20, 32–35]

Signal Type

802.11a WiFi [20, 25–27, 32, 46]

GSM Cellular [36, 37, 45]

802.16e WiMax [32, 33, 35, 46]

802.15.4 ZigBee [9–11, 29] × [30]

Classifier Type

MDA/ML
[25–27, 39, 40, 45, 46]

× [30]
[9–11, 20, 29, 33, 35–37]

GRLVQI [20, 25, 26, 32, 34] × [30]

LFS [2–4, 20–23]

Dimensional Reduction Analysis (DRA)

GRLVQI [9, 11, 25, 26, 31, 32, 34] × [30]

LFS [19, 20]

KS-Test [9, 11, 29]

Device ID Verification

Authorized Device [9, 11, 32, 34]

Rogue Device Rejection [9, 11, 32, 34]

Model Development

Hybrid Cross-Location [9–11]

Hybrid Cross-Receiver × [30]
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II. Background

This chapter contains the technical background that serves as the framework for

methodology described in Chap. 3. Section 2.1 describes the basic ZigBee signal

structure as used in WPANs under IEEE 802.15.4. Section 2.2 introduces details for

Air Force Institute of Technology (AFIT)’s Radio Frequency Distinct Native Attribute

(RF-DNA) fingerprinting process, including fingerprint generation and calculation of

statistical metrics from instantaneous time-domain signal responses. Section 2.3 describes

elements of the Multiple Discriminant Analysis, Maximum Likelihood (MDA/ML) process

and Section 2.4 describes the Generalized Relevance Learning Vector Quantization-

Improved (GRLVQI) process.

2.1 ZigBee Signal Characteristics

ZigBee-based networks adhere to guidelines provided in IEEE 802.15.4 [24], which

specifies structure of “Physical” and “Data-Link” (specifically Media Access Control

(MAC)-sublayer) layers for ZigBee device transmission. As shown in Fig.2.1 [24], ZigBee

packets exhibit the data frame specification as provided in standards. The MAC sublayer

contains the actual transmission including the associated addressing fields, sequence

numbers, data being transmitted, etc. This research focuses on a specific Region of

Interest (ROI) for exploitation known as the Synchronization Header Response (SHR)

as shown in the “Physical” layer in Fig.2.1. This region is composed of a 5-octet, two

sequence structure as shown in Fig.2.2. The SHR includes:

1. Preamble: A 4-octet (32-bit) binary string of 0’s that is designed to provide symbol

chip timing for the transmitting device.

2. Start-of-Frame-Delimiter (SFD): A 1-octet (8-bit) binary string that is predefined as

(1 1 1 0 0 1 0 1). It is designed to signify the end of the preamble and thus the

8



beginning of the actual transmission, beginning with the “Frame Length”. The SFD

is known alternatively as the “sync” frame, which is used throughout this paper.

The SHR waveform response serves as the ROI for this research because of its defined

standard behavior, which is supposed to be identical for all devices, i.e., the SHR is the one

part of any ZigBee transmission that remains constant [24]. Fully independent of device

type, device ID, applications being performed, etc., the pre-defined bits and corresponding

waveform response remain the same for all ZigBee transmissions. This independence is

necessary in performing later model development and classification as described in Chap.

3. Previous research [10] failed to exploit the entire SHR, focusing soley on the “Preamble”

for developing a model and performing classification. After further analysis, [9] found

that exploitation of the entire SHR (Preamble + SFD) provided notably better Device

Classification performance. It is under this auspice that research as described in Chap.

3 was performed and subsequent results in Chap. 4 reported.

Figure 2.1: Physical Layer and MAC Sublayer Structure for a ZigBee Packet [24].
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Figure 2.2: Physical Protocol Data Unit (PPDU) packet structure for IEEE 802.15.4 [24].

The SHR as specified on the left is the ROI for this research

2.2 RF-Fingerprint Generation

An RF-DNA fingerprint is the collective term used to describe a unique, human-like

signature for a specific wireless device. Each fingerprint is generated in a two-step process

that includes calculation of instantaneous time domain signal responses, and calculation of

statistical metrics of those signal responses. Each step is further discussed below:

2.2.1 Time Domain Signal Responses.

The ZigBee SHR contains a unique time-domain waveform in which instantaneous

signal responses that describe it can be calculated. This research, as described and exe-

cuted in [9–11, 27, 30, 31, 36, 37, 40, 46] focused on NCh = 3 characteristic instantaneous

responses (a = amplitude, φ = phase, f = frequency) in a burst. Each collected signal

is represented as complex In-Phase and Quadrature (I/Q) component pairs which both re-

ceivers collect and store in the form of 16-bit integers [28]:

[I0,Q0, I1,Q1, ..., INC ,QNC ] ,

where NC represents the total number of collected sample I/Q pairs. The corresponding

instantaneous time-domain responses (a, φ, f ) are calculated as [30]:

a[n] =
√

I[n]2 + Q[n]2, (2.1)
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φ[n] = tan−1
[
Q[n]
I[n]

]
, for I[n] , 0, (2.2)

f (n) =
1

2π

[
dφ(n)

dt

]
, (2.3)

for a given sample number n = 1, 2, 3, . . . ,NC.

These calculated elements of the SHR are then normalized [27, 40] and their mean

value removed. This is done by first removing the mean value for each element within a

single response and then dividing (normalizing) the collection of remaining elements by

the maximum value. This is accomplished for each response in (2.1), (2.2), and (2.3) and

yields:

āc(n) =
a[n] − µa

max
n
{ac[n]}

, (2.4)

φ̄c[n] =
φ[n] − µφ

max
n
{φc[n]}

, (2.5)

f̄c[n] =
f [n] − µ f

max
n
{ fc[n]}

. (2.6)

where (2.4), (2.5), (2.6) show the respective mean (µa, µφ and µ f ) being removed and

“max” notes the value by which each response is normalized; these are the normalized

signal responses used for RF-DNA fingerprint generation.

2.2.2 Statistical Metrics.

After each response is centered and normalized, statistical metrics are calculated.

Following [9–11, 27, 30, 31, 36, 37, 40, 46], NM = 4 statistical metrics can be calculated

(σ = standard deviation ,σ2 = variance, γ = skewness, κ = kurtosis) for each response.

This is done by:

1. Dividing the SHR into NR equal subregions subject to the constraint that NC/NR is

an integer. Additionally, the entire SHR is examined and treated as a region itself,

yielding a total of NR+1 regions.
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2. Calculating σ, σ2, γ, and κ (as selected) for each response sequence āc(n), φ̄c[n], and

f̄c[n] according to

µ =
1
N

N∑
n=1

x[n] , (2.7)

σ =

√√
1
N

N∑
n=1

(x[n] − µ)2 , (2.8)

σ2 =
1
N

N∑
n=1

(x[n] − µ)2 , (2.9)

γ =
1

Nσ3

N∑
n=1

(x[n] − µ)3 , (2.10)

κ =
1

Nσ4

N∑
n=1

(x[n] − µ)4 , (2.11)

where NC represents the total number of collected samples.

3. Arranging selected (2.8)-(2.11) metrics in a vector for each specific region as,

FRi = [σRi σ
2
Ri
γRi κRi]1×4, (2.12)

where i = 1, 2, 3, . . . ,NR+1. An example of this process is shown in Fig. 2.3 [31].

In total, for each fingerprint composed of NCh instantaneous responses and NM

statistical metrics per response, over an SHR of NR+1 regions, the number of “full-

dimensional” (FD) features (NFD) is calculated as,

NFD = NCh × NM × NR+1, (2.13)

where each full-dimensional fingerprint F is composed of the calculated statistics for

each of the three instantaneous responses and shown as
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Figure 2.3: Process to generate a unique fingerprint utilizing statistical metrics for each

instantaneous response over NR+1 subregions [31].

F = [Fa ... Fφ ... F f ]1×NFD , (2.14)

These full-dimensional RF-DNA fingerprints are then used for model development and

classification for all devices (classes) using the two methods as described below.

2.3 MDA/ML Processing

The MDA/ML model development and classification process is comprised of two

seperate processes including Multiple Discriminant Analysis (MDA) and Maximum

Likelihood (ML) estimation. The description included here is based largely upon [9], with

selected elements included here for completeness. MDA serves as a method to develop a

model utilzing the Training RF-DNA fingerprints as will be discussed in Chap. 3. ML is

a classification method that uses the Testing RF-DNA fingerprints to compare to the model

generated by MDA and subsequently perform Device Classification. Both processes are

presented in further detail below.
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2.3.1 Multiple Discriminant Analysis (MDA) Model Development.

This section describes how a model, later used for classification, is developed using

MDA. MDA is a process, based on Fisher’s Linear Discriminant, that linearly projects a

high-dimensional data space into a lower-dimensional one. The desired effect is to follow

the method of least-squares whereby a generalized linear model can be generated [12].

Unlike the Fisher method, which only works for discrimination of a NCl ≤ 2 class prob-

lem, MDA works to reduce the feature dimensionality describing an RF-DNA fingerprint

through projection for NCl > 2. MDA takes a specified number of feature (NF)-dimensional

described input, and projects it into a subspace that is characterized by ND dimensions. It

is noted that through the remainder of this document, the term “class” is interchangable

with a single “device” and accordingly with NDev = 6 devices as described in Section 3.1,

NCl = 6 classes. The overall goal of this projection is to maximize the distance of the space

describing each class from another while simultaneously minimizing the spread within a

class. Mathematically, this directly translates to a desired maximum distance between the

mean of each class, while minimizing the variance within a single class [12].

Two scatter matrices required for MDA are the out-of-class (inter-class, Sb) and in-

class (intra-class, Sw) matrices [42]. These two matrices are used to assemble the required

projection matrix, referred to as W. It is this matrix that is used to project a fingerprint F,

and maintain an optimal balance ratio between inter-class means and intra-class variances

as described in [12]. These scatter matrices, as well as their components are computed

as [42],

Sb =

NCl∑
i=1

PiΣi , (2.15)

Sw =

NCl∑
i=1

Pi(µi − µ0)(µi − µ0)T , (2.16)
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where class covariance (Σi) and the global mean of all classes (µ0) are calculated as

Σi = E[(x − µi)(x − µi)T ] , (2.17)

µ0 =

NCl∑
i=1

Piµi . (2.18)

µi and Pi as referenced in (2.18) are the mean and prior probability for each class

respectively. The intra-class scatter matrix in (2.16) provides a measure of the sum of

probability-weighted class feature variances for each individual class while the inter-class

scatter matrix in (2.15) provides a measure of the average distance (over all of the classes

combined) between individual class means from the respective calculated global mean of

all classes combined.

The NF-dimensional input RF-DNA fingerprint vectors, shown as F from (2.14), are

then projected into the lower (ND)-dimensional subspace using the projection operator

matrix, shown below as

f̂ = WT F . (2.19)

W is the NF×ND projection matrix formed from the NCl−1 eigenvectors of S−1
w Sb, and f̂ is

the resulting RF-DNA fingerprint after projection into the new subspace [42]. Each of these

fingerprints f̂ will then be split into Training and Testing sets as described in methodology

in Chap. 3. An example of MDA projection is shown in Fig. 2.4. Here, NCl=3 classes

are represented, resulting in a ND = 2-dimensional subspace. W1 and W2 respectively

represent the two projection matrices described above. In this illustration, following the

desired maximum mean seperation for the MDA process, W1 represents the “best” class

separation with no overlap among the three classes. Once the best projection matrix

(referred to as the actual “model”) has been determined by MDA, and all Training RF-

DNA fingerprints describing each class have been projected onto their respective subspaces,
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model creation is finished and the process of Device Classification begins using ML and

the projected Testing RF-DNA fingerprints.

Figure 2.4: MDA Projection Representation for NCl=3 Classes corresponding to projection
onto 2-dimensional subspaces using W1 and W2 [12] operators; Showing maximum
seperation (no overlap among the different classes), W1 is the optimal projection matrix
(model) in this case.

2.3.2 Maximum Likelihood (ML) Classification.

ML is a method of Device Classification that uses the model developed with MDA.

As previously stated, after a model is created using the Training RF-DNA fingerprints, ML

takes the remaining (and unused) fingerprints describing the Testing data set, and performs

Device Classification. ML classification begins once the best “model” or projection matrix

(W) is determined, and the Testing fingerprints for each class are projected onto the

subspace. At this point in the process, the Training fingerprints have been projected,

and the mean (µ̂i), and covariance (Σ̂i) for each individual class have been computed

for i=1, 2, . . . ,NCl. ML operates off the assumption that all of the projected data is a

Multivariate Guassian (MVG) distribution and hence each class can be described by its own

class-dependent µ̂i and Σ̂i. Additionally, the ML process can assume that the covariance for
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each class is identical and thus, a collective estimated covariance describing all classes can

be shown as

Σ̂P =
1

NCl

NCl∑
i=1

Σ̂i . (2.20)

With the assumption of each class as a MVG distribution, posterior conditional

probabilities can be calculated for each Testing fingerprint f̂ and used to provide a

measurement of class (ci) likelihood. Following the MVG distribution and collective

covariance (2.20) estimate, likelihood estimation can be implemented as [31, 42],

P
(
f̂|NCli

)
=

1

(2π)(NCl−1)/2 det
(
Σ̂P

)1/2 · exp(Fe) , (2.21)

where Fe is calculated as

Fe = −
1
2

(
f̂ − µ̂i

)T (
Σ̂P

)−1 (
f̂ − µ̂i

)
. (2.22)

ci likelihood values as used for ML are based on a Bayesian decision theory. Each f̂ from

the Testing data set is assigned to a specific ci by

P
(
ci|f̂

)
> P

(
c j|f̂

)
∀ j , i . (2.23)

Again, i=1, 2, . . . ,NCl and here, P
(
ci|f̂

)
is known as the the conditional posterior

probability that a given f̂ belongs to a specific class ci. The conditional posterior probability

P
(
ci|f̂

)
in (2.23) is calculated using Bayes’ Rule using specific ci likelihood values as shown

below [31, 42]:
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P
(
ci|f̂

)
=

P
(
f̂|ci

)
P(ci)

P
(
f̂
) . (2.24)

It is assumed that P(ci)=1/NCl, meaning that all prior probabilities are equal for all classes.

This, coupled with the fact that for any given f̂ fingerprint, P
(
f̂
)

is the same for all ci

as applied to (2.24), allows for simplication when making a comparison using (2.23).

Classification is then performed on a single Testing f̂ using criteria in (2.23). Each f̂

is assigned a specific ci “label” based on maximum posterior probability. A “correct

classification” occurs if the assigned ci label matches the true or known ci label. This

process is repeated on all Testing fingerprints.

2.4 GRLVQI Processing

The second method considered for model development and classification is GRLVQI.

The description included here is based largely upon [31], with selected elements included

here for completeness. Unlike MDA/ML which is a two-stage process of model

development and classification, GRLVQI is a one-stage process that develops a model

and performs classification simultaneously. GRLVQI provides some advantages over

MDA/ML, including:

1. No required assumption of MVG distribution; GRLVQI does not require knowledge

of or assumption of any specific statistical distribution.

2. Model Development and Device Classification are performed jointly, rather than as

independent processes.

3. Each input feature is assigned a relevance value (λ) that allows for feature ranking

and Dimensional Reduction Analysis (DRA), as described in Section 3.4.

The model generated by GRLVQI utilizes prototype vectors that describe a specific

space for each class. The number of prototype vectors NP is pre-defined before model

18



development and classification take place. NP is the same for all classes and each prototype

vector used is comprised of NF features. The collection of all prototype vectors that

describe the classes is represented by pn, and given by [18]

pn = [P](NCl·NP)×NF , (2.25)

where NCl is the number of classes and P is a matrix that defines the classification

boundaries for the prototype vectors. The overall goal is to minimize Bayesian risk by

iteratively shifting the intra-class (pn) and inter-class (po) prototype vectors that describe

the space for all classes until a “best fit model” is achieved. This shift, dn
λ, is computed

as [18]

dn
λ =

NF∑
i=1

λi(f̂
m
i − pn

i )2 , (2.26)

where f̂m
is a randomly chosen Training input fingerprint to start the process, and n is the

prototype vector from (2.25) such that n = 1, 2, 3, . . . ,NP. λi is also randomly chosen when

the process is started.

This iterative process continues [31] until the prototype vectors are arranged in a best-

fit model and the corresponding λi values determined. Each λi receives a ranking (number)

that indicates its importance in classification; each i is known as an “index number” and

directly corresponds to a single feature. All λi’s are organized into a single vector known

as λB where it is possible for different index numbers (different features) to have the same

relevance ranking (λ) value, however,

NF∑
i=1
λi = λB ≡ 1.
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The higher the λi value, the more important or relevant it is in performing Device

Classification as will later be discussed in Section 3.4. Finally, the Testing fingerprints

(f̂) are placed in 2.26 one at a time according to the best model, and the euclidean-distance,

between each f̂ and the prototype vectors, is calculated as shown in Fig. 2.5 [31]. The

classification (assignment of that particular f̂ to a specific ci) follows according to [31]

ci : min
i, j

(dp
λ(pi, j, f̂)) (2.27)

Figure 2.5: GRLVQI Projection Representation for a single fingerprint f̂ for NCl=3
Classes[31].
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III. Methodology

This chapter contains the methodology utilized while conducting this research in order

to obtain the results as presented in Chap. 4. Simultaneous emissions collections

were taken by both receivers for a single device at a time. These emissions, stored by

the receivers as basic In-Phase and Quadrature (I/Q) components, were then converted

into complex values for ease in signal processing. MATLAB was then used to compute

instantaneous responses of detected bursts over the entirety of the Region of Interest

(ROI) and used to detect and extract “bursts.” The ROI, or ZigBee Synchronization

Header Response (SHR), was then down-converted to base-band and filtered with a 8th-

order Butterworth filter to remove background channel noise. Simultaneously, Additive

White Gaussian Noise (AWGN) was generated, like-filtered, and added to the filtered

SHR to appropriately power-scale and achieve S NR∈[0 24] dB. This resulting signal,

comprised of the sum of the down-converted and filtered SHR and AWGN, was then

broken into NR subregions. These subregions were then used to calculate statistical

metrics based off of the instantaneous time-domain signal responses. These are statistical

“features” used to generate a unique Radio Frequency Distinct Native Attribute (RF-DNA)

fingerprint that was used in Device Classification using both Multiple Discriminant

Analysis, Maximum Likelihood (MDA/ML) and Generalized Relevance Learning Vector

Quantization-Improved (GRLVQI) processes. Section 4.1 describes the setup for collecting

emissions. Section 4.2 discusses all post-signal collection processing, including burst

detection, filtering, and AWGN-aided S NR scaling. Section 4.3 discusses how an RF

fingerprint was generated for a full-dimensional feature-set, while Section 4.4 discusses

the process known as Dimensional Reduction Analysis (DRA). Finally, Section 4.4

discusses device discrimination, using both MDA/ML and GRLVQI model generation and
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classification techniques. Accounting for specific receivers used here, AFIT’s entire RF-

DNA Fingerprinting process is as shown in Fig. 3.1 [9].

Figure 3.1: AFITs Fingerprinting Process [9]

3.1 Signal Collection

Two receivers, the National Instruments (NI) PCI Extension for Instrumentation Ex-

press (PXIe)-1085 and Universal Software Radio Peripheral (USRP)-2921, each with a 16-

bit Analog-to-Digital Converter (A/D), were used to collect RF emissions from six Atmel

AT86RF230 KillerBee ZigBee transceivers transmitting at 2.48 GHz per IEEE 802.15.4.

Each device (collectively referred to henceforth as Atmel RZUSBstick or seperately as
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Dev1, Dev2,...,Dev6) was placed 2.0m away from and in direct line-of-sight (LOS) of each

receiver as depicted in Fig. 3.2 [30]. To present the “most challenging” scenario possible

for Device Discrimination and obtain an accurate comparison between the higher-value

PXIe (≈ $150K) and lower-value USRP (≈ $2K), multiple controls for the collection pro-

cess were established, including:

Figure 3.2: Setup to collect Atmel RZUSBstick emissions using PXIe and USRP

receivers [30].

1. Emissions collected on one device at a time

2. Simultaneous collections of the same device emissions by both receivers

3. Possible receiver clock presence (Fig. 3.3) affecting collection center frequency

addressed with 3MHz offset

Accounting for all of these factors, emissions (also referred to as bursts) were collected

for each device at a sample rate of fs = 20 Msps. Fig. 3.4 shows a one-sided, expanded
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view of Fig. 3.3.

Figure 3.3: Normalized PSD of Atmel RZUSBstick collection noting clock presence near

f = 0 Hz.

Figure 3.4: Normalized PSD response from Fig. 3.3 with 3MHz center frequency offset.

Collections taken at fs = 20 Msps.
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3.2 Post-Collection Processing

Following emission collections on all ZigBee devices using both receivers, a series

of post-collection processing steps were performed using MATLAB before RF-DNA

fingerprint generation. Collected bursts were first put through an amplitude-based

detection process, with bursts meeting specific criteria “extracted,” and those not discarded.

Extracted bursts were down-converted (center frequency shifted to f = 0), and subsequently

placed through a baseband filter to remove background noise. Finally AWGN was

generated, like-filtered, power-scaled, and added to the bursts to achieve a desired

S NR∈[0 24] dB. Each of these steps followed those from previous work [9, 30, 31], and

are described specific to this research next.

3.2.1 Burst Detection.

As discussed in Section 2.2.1, collected emissions from both receivers were stored as

interleaved I/Q components according to [28]:

[I0,Q0, I1,Q1, ..., INC ,QNC ]; (3.1)

where NC is the total number of collected samples. For easier processing in MATLAB,

each I/Q pair was converted into its corresponding complex format as:

[(I0 + jQ0), (I1 + jQ1), ..., (INC + jQNC )]. (3.2)

The collected bursts were then put through an amplitude-based detection process to extract

usable bursts out of the background noise. Bursts that met specific detection criteria were

determined as suitable to subsequently turn into fingerprints for later Device Classification,

while others were discarded. Specific requirements for detected bursts included specific

leading (tL) and trailing (tT ) edge thresholds, as well as minimum (TMin) and maximum

(TMax) time duration, shown in Table. 3.1.
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Table 3.1: Amplitude-based burst detection parameters for ZigBee transmission collec-

tions.

Parameter Variable Value

Leading Threshold tL -6.0 dB

Trailing Threshold tT -6.0 dB

Min Duration TMin 425 µsec

Max Duration TMax 550 µsec

The detection process began with the instantaneous amplitude response (a[n]) being

calculated according to (2.1). These values for a specific collection (multiple bursts) were

then converted into dBv using:

a[n]dBv = 20 log10(
a[n]
1.0 v

). (3.3)

This provides a direct relation between amplitude and dB so that the largest a[n]dBv for

a specific n can be found throughout the entire collection. A normalized peak value is

then established such that all other bursts in the collection meeting the required tL and tT

thresholds from this peak are retained for possible extraction. If a burst has met this re-

quirement, it is then examined for duration requirements. Recalling that fs = 20 Msps,

and ∆t = 1/ fs = 0.05 µsec, a direct relation between NC samples and time duration can be

established. The burst duration is then calculated according to its leading sample (nL) and

trailing sample (nT ) where

NDur = (nT − nL), (3.4)
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TMin < (NDur ∗ ∆t) < TMax. (3.5)

If threshold and duration requirements are met, a burst is retained and “extracted” for use

in classification; if it does not meet the requirements it is discarded.

3.2.2 Down Conversion and Filtering.

After burst extraction was completed, the retained bursts were subsequently placed

through a two-stage process where each was down-converted to baseband ( fc = 0) and

filtered. Each process is outlined below:

1. MATLAB was used to down-convert each extracted burst to baseband using its

own center frequency estimate derived from a gradient-based frequency estimation

process [9, 30].

2. The down-converted burst was placed through a baseband filter to remove back-

ground noise and minimize fluctuations in Device Classification. This was done

as in [9, 30], using a 8th-order Butterworth filter having a baseband bandwidth of

WBB = 1MHz. The result was a single burst, centered at fc = 0, with minimal ef-

fect from noise outside of the collected IEEE 802.15.4 channel. This process was

repeated for all extracted bursts, with one such burst shown in Fig.3.5 [30].

3.2.3 SNR Scaling.

Finally, to provide a desired analysis range of S NR∈[0 24] dB (S NRA) for Device

Classification, AWGN was created using MATLAB and like-filtered before addition to

each burst to form the collective SHR used to generate fingerprints.

The collected S NR (S NRC) is a function of both power in the collected signal (without

background noise) (PC), and the power in the background noise during collection (PN). PN
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Figure 3.5: Normalized PSD Response for Atmel RZUSBstick after baseband down-

conversion and application of 8th-order Butterworth Filter WBB = 1MHz [30].

was measured when none of the six devices was transmitting so that it represents a true

“noise-only” power. The resulting S NRC in dB is represented as

S NRC = 10 × log10

(
PC

PN

)
(dB) , (3.6)

which for typical ZigBee collections here ranged from S NRC ≈ 24 dB (USRP) to S NRC

≈ 30 dB (PXIe).

The total signal (sTot) used for analysis over S NRA is the summation of the received

signal with no noise (sr), background noise alone (sN), and added AWGN (sGN), and is

given by

sTot = sr + sN + sGN . (3.7)

The average power in sGN required to achieve S NRA is noted as PGN . The noise samples

used to create the desired average AWGN were generated using a random sequence with a
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normal distribution that was complex with zero mean. With PGN = 1, the associated scale

factor (S F) required to obtain the desired analysis S NRA is given by

S F =

√
10

−S NRA
10 × PC . (3.8)

Following the definition of S NR as the ratio of total signal (without noise) to total noise

(without signal), (3.6) can be rewritten to incorporate PGN , shown as

S NRA = 10 × log10

(
PC

PN + PGN

)
(dB) , (3.9)

where it is noted that generally, the scaled AWGN power is far greater than the collected

background noise power (PGN>>PN). This allows for (3.9) to be simplified, reducing it to

S NRA = 10 × log10

(
PC

PGN

)
(dB) . (3.10)

Finally, the total estimated average power for PGN can be calculated following the

expression for the total of any given arbitrary complex sequence as shown below

PGN =
1

NC

NC∑
i=1

S F · nGN(i)S F · n∗GN(i) . (3.11)

where nGN(i) is the real power, and n∗GN(i) is the complex conjugate or reactive power,

over i=1, 2, . . . ,NC total samples. As described above, this process of generating AWGN

and appropriately scaling it such that Device Classification could be performed over

S NRA∈[0 24] dB, was repeated and subsequently added to each extracted burst before

RF-DNA fingerprint generation. Finally, it is noted that S NRA henceforth is referred to as

S NR∈[0 24] dB throughout this document.

3.3 RF Fingerprint Generation

The overall ZigBee SHR as described in Section 3.2.3 (SHR + AWGN), while similar

in structure when defined in terms of transmitted bits, is slightly different for each device
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in terms of the physical waveform. The SHR therefore contains each device’s unique

signature. This unique signature comes from manufacturing tolerances, device aging

characteristics, and differences in the manufacturing process. It is this unique, device-

dependent signature that is exploited to generate RF-DNA fingerprints and perform Device

Classification.

IEEE 802.15.4 defines the first 5 octets for all ZigBee signals. The first TP = 128

µsec of each transmission corresponds to the preamble, and the following TS yn = 32 µsec

contains the synchronization information [24]. The collective preamble and sync informa-

tion (128 µsec +32 µsec) makes up the total TS HR = = 160 µsec) SHR, as illustrated in

Fig.3.6. Accordingly, the duration of collected emissions, given ∆t = 1/ fs = 0.05 µsec in

each sample, is given by:

Figure 3.6: ZigBee transmission showing the SHR (highlighted in red) and the payload

(highlighted in blue).
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NPre =
128µsec
.05µsec

= 2560samples. (3.12)

NS yn =
32µsec
.05µsec

= 640samples. (3.13)

NS HR = 2560 + 640 = 3200samples. (3.14)

Recalling the constraint that NC/NR must be an integer per Section 2.2.2, the SHR was

divided into NR = 32 equal subregions of 100 samples each, beginning at the start of the

transmission (burst) and ending after the last sync sample as depicted in Fig. 3.7.

Each subregion of 100 samples contained three instantaneous signal responses (a, φ,

f ) that uniquely described that subregion. Each instantaneous response was described by

three RF-DNA statistics (σ2, γ, κ). Accordingly, σ2, γ, and κ were calculated per (2.9)-

(2.11) for each a, φ, and f for each of the NR = 32 subregions as well as over the entire

SHR for one final region such that the total number of regions was NR+1 = 33. Each statistic

calculation represents a single RF-DNA “feature.” It is these specific features that uniquely

generated the RF-DNA fingerprints used for MDA/ML and GRLVQI Device Classification.

In the case that all features were used to describe a unique fingerprint, known as “full-

dimensional” (FD), the number of features is shown as

NFD = (a, φ, f) × (σ2, γ, κ) × (NR+1) = NF = 297. (3.15)

3.4 Dimensional Reduction Analysis

A process known as DRA was performed to reduce the number of features contained

within each RF-DNA fingerprint for a given device. The overall DRA goal is to effectively

reduce computational time and complexity, while maintaining a desired comparable
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Figure 3.7: Magnitude response of a single burst SHR divided in to NR = 32 subregions

for subsequent RF-DNA fingerprinting. 100 samples are represented between each vertical

red dashed line.

classification performance regardless of the receiver used. Two types, Quantitative DRA

and Qualitative DRA are discussed next.

3.4.1 Quantitative DRA.

The first method of DRA is enabled through GRLVQI and deals with the actual

number of features NF . Recall from Section 3.3 that the full-dimensional set of features

describing an RF-DNA fingerprint for the Atmel RZUSBstick is NFD = NF = 297
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features. This research followed the method in [9, 31] to iteratively reduce NF to a level

that maintains the %C=90% performance benchmark as will be described in Chap. 4.

Quantitative DRA takes the GRLVQI relevance vector λB from Section 2.4 and selects a

specified number of salient features such that only the top-ranked λi values are retained and

used to represent the characteristic “space” of a particular class. These values are relevance

ranked, meaning that the top-ranked (highest-valued λi) features have the greatest impact on

Device Classification. Quantitative DRA can be performed using any desired NF provided

the chosen value adheres to

NFD ≤ NF > 0. (3.16)

Selection of specific values used for NF here are described in Chap. 4, where results for

NF = 5, 10, 33, 66, and 99 features are provided.

3.4.2 Qualitative DRA.

The other method of DRA selects feature-sets as a given instantaneous signal response

subset as described in Section 2.2. Again the full-dimensional feature-set for a given RF-

DNA fingerprint included NFD = NF = 297 features. These features were composed

of statisticas (σ2, γ, κ) calculated for the instantaneous (a, φ, f) responses of a given burst.

Given three responses for each full-feature RF-DNA fingerprint,

NF(a) = NF(φ) = NF( f ) = 99, (3.17)

where during RF-DNA fingerprint generation, response features were organized sequen-

tially in RF-DNA fingerprints according to

F = [F(a)
...F(φ)

...F( f )]1×297, (3.18)

where indices in F are given by:
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a : i ∈ [1 99]; φ : i ∈ [100 198]; f : i ∈ [199 297]. (3.19)

Each subset was analyzed seperately, meaning that in one case for example, φ-only

features were used. In each case, relevance rankings (1 − 99 with “1” being noted as the

“top feature” and thus having the biggest effect on Device Classification) were assigned to

the given subset of λi values. This process was repeated for each instantaneous response

(a, φ, f) to obtain an accurate comparison among the subsets of their effects on Device

Classification. Additionally, this enabled direct comparison with Quantitative DRA for

NF = 99 (where the number of features may be composed of features from any and all of

the a, φ, or f subsets).

3.5 Device Discrimination

As described in Chap. 2, two methods of Device Discrimination were performed

using identical sets of RF-DNA fingerprints, MDA/ML and GRLVQI. Fig. 3.8 [41]

shows the basic discrimination process (in block diagram form) that all classifiers follow.

Additionally, DRA was performed using a model generated from GRLVQI and its

associated λ values; all methods of Device Classification performed will be shown in

Section 3.5.3.

3.5.1 MDA/ML Model Development and Classification.

The development here is taken exclusively from [9] and presented here for complete-

ness. MDA/ML as described in Section 2.3 is a two-step discrimination process that in-

volves both MDA model development and ML Device Classification. It is an extension

of Fisher’s Linear Discriminant and used for NCl > 2. This research was conducted

for six devices (classes), NDev = NCl = 6, and it thus follows from Section 2.3.1 that

ND = (NCl = 6) − 1 = 5 dimensions.
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Figure 3.8: Block diagram of device discrimination process showing model development,
usage of test statistics, and subesequent classification [41]. It is noted that “verification” is
possible after model development as well but not addressed in this research and therefore
grayed out.

MDA/ML was performed using RF-DNA fingerprints from both the PXIe and USRP

NI receivers for three different models:
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1. Single Receiver: PXIe-only Training fingerprints

2. Single Receiver: USRP-only Training fingerprints

3. Hybrid Cross-Receiver: Combined PXIe and USRP Training fingerprints

Each model was developed by MDA through input feature dimensional reduction. The

full-dimensional feature-set, NF=297, RF-DNA Training fingerprints were projected onto

the ND=5-dimensional subspace. This was done using an iterative method known as

a K-fold process as described in detail in [9]. K-fold is a method that uses cross-

validation to develop the “best” model for use in Device Classification as shown in Fig. 3.9

[9]. The best model, as discussed in Section 2.3.1, refers to the model that leaves the

maximum distance between the mean of each class and simultaneously minimizes the

variance within any single class [12]. This research utilized a K=5 approach for model

development. Once the best model (WB) was selected, that model formed the projection

matrix (W) as discussed in Section 2.3.1. The fingerprints (F j) were then projected

according to (2.19), with the resulting f̂ representing the lowered-dimensional projected

RF-DNA fingerprints. Following projection of all RF-DNA fingerprints, the feature space

describing each class was “mapped” accordingly into the Fisher Space (Fig.3.10) such that

the “decision boundaries” defining each respective class were formed. ML was then used

to perform Device Classification.

ML classification, as described in Section 2.3.2, was accomplished using the

remaining Testing fingerprints that were set aside during MDA model development. Each

of the NDev = 6 devices were represented and the process again assumed Multivariate

Guassian (MVG) distributions. The distributions were each described by their class-

specific means (µ̂i) where i = 1, 2, ...(NCl = 6), and a collective covariance for all devices

(Σ̂P) as calculated in (2.20). Additionally, all prior probabilities and device likelihoods
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were assumed to be equal. Each Testing fingerprint was classified one at a time following

the iterative process [9]:

1. Input Testing fingerprint F j from an unknown class c j.

2. Project F j into the Fisher space using (2.19) to generate projected fingerprint f̂ j.

3. Associate f̂ j to one of the known classes (devices) based on its maximum conditional

likelihood probability according to

ci : arg max
i

[
p(ci|f̂ j)

]
, (3.20)

where i=1, 2, . . . , (NCl = 6) and p(ci|f̂ j) is the conditional likelihood probability that

projected fingerprint f̂ j belongs to class ci. The overall measure of effectiveness for

the classifier (%C) is the percentage of the time the classifier correctly assigns the

fingerprint to its true device or class over all trials performed. “Correct” classification

notes when f̂ j is classified as its known ci for a single trial.

3.5.2 GRLVQI Model Development and Classification.

The development here is taken exclusively from [18, 31] and presented here for com-

pleteness. GRLVQI processing follows the same basic process shown in Fig. 3.8 [41].

Unlike MDA/ML though, GRLVQI, as described in Section 2.4, performs model develop-

ment and Device Classification jointly, rather than as two independent processes.

GRLVQI requires no prior assumption of MVG distribution and additionally,

requires no knowledge of or assumption of any specific statistical distribution for model

development. It uses a specified number of prototype vectors to “shape” the space of each

class. This research utilized NP = 10 prototype vectors to describe each class, with each

prototype vector being comprised of NF = 297 features for full-dimensional analysis. The
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collection of all prototype vectors, pn as derived in (2.25) [18], was used to iteratively shift

intra-class (pn) and inter-class (po) prototype vectors until a “best model” was achieved

according to (2.26) [18]. Model development and subsequent classification followed the

process as shown below:

1. Randomly choose a Training fingerprint (f̂m
) and relevance-ranked feature (λi) and

input to (2.26).

2. Shift prototype vectors describing class “space” by distortion factor dn
λ

3. Continue to iteratively shift protype vectors by dn
λ and update corresponding

relevance-rankings (λi) until “best-fit model” is achieved by defined smallest dn
Bias

as described in [31]

4. Define “best-fit” relevance ranking vector (λB) as the vector containing λi for

i = 1, 2, 3, . . . ,NF; higher-valued λi correspond to most relevant features used in

describing a class.

5. Measure euclidian distance from a single Testing fingerprint (f̂) to each of the

prototype vectors as defined by the best model.

6. Associate the unknown f̂ to one of the known ci based on the smallest euclidean

distance to the prototype vectors of a specified ci following

ci : min
i, j

(dp
λ(pi, j, f̂)) (3.21)

where i=1, 2, . . . , (NCl = 6) and j=1, 2, . . . , (NP = 10). As with MDA/ML,

%C provides the measurement of classifier effectiveness and “correct” classification

occurs when f̂ j is classified as the true known ci.
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3.5.3 Comparative Assesment Test Matrix.

The full spectrum of assesments performed, including full-dimensional and DRA

(quantitative and qualitative) using both MDA/ML and GRLVQI is shown in Table. 3.2.

The results of these tests, which allow for an accurate comparison of both classification

methods, as well both receivers are further discussed in Chap. 4.

Table 3.2: Comparative Assesment Test Matrix: 1 Full-Dimensional Baseline (MDA/ML &

GRLVQI), 2 Quantitative DRA (GRLVQI), 3 Quantitative vs. Qualitative DRA (GRLVQI),

and X denotes Test Not Performed
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Figure 3.9: An illustration of the K-fold training process used for MDA model
development. The “best” model WB is selected based on the WK that yields the highest
%Ck. This WB then becomes the model projection matrix used for subsequent classification
and verification [9].
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Figure 3.10: Signal collection, post-collection processes and K-fold cross-validation
training for MDA model development. This depicts a representative NDev=3 ZigBee
devices (classes) and the corresponding 2D Fisher Space. Each (o) represents a projected
training fingerprint f̂ clustered around the respective class means shown as (•) [9].
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IV. Results and Analysis

This chapter contains device discrimination results for six ZigBee devices using emis-

sions collected on National Instruments (NI) PCI Extension for Instrumentation Ex-

press (PXIe) and Universal Software Radio Peripheral (USRP) receivers. Device Classi-

fication was performed on both full-dimensional as well as qualitative and quantitative

Dimensional Reduction Analysis (DRA) feature-sets. DRA was performed using Gen-

eralized Relevance Learning Vector Quantization-Improved (GRLVQI) relevance-ranked

features. Subsequent classification of fingerprints from both receivers using DRA was only

performed using the GRLVQI method previously discussed in Section 3.4. Finally, De-

vice Classification was executed on the Hybrid fingerprints. Here, the term Hybrid is used

in different context from [9] and describes Cross-Receiver model development using RF-

DNA fingerprints derived from PXIe and USRP collections. As with the single-receiver

setup described above, both full-dminesional and quantitative only DRA feature-sets were

used for Device Classification. Section 4.1 describes how the model was developed after

dividing the prints into Training and Testing sets. Section 4.2 discusses full-dimensional

fingerprint Device Classification using both Multiple Discriminant Analysis, Maximum

Likelihood (MDA/ML) and GRLVQI methods and compares performance of PXIe and

USRP. Section 4.3 details the DRA process, including specific quantitative NF selection

and comparison of qualitative versus quantitative features for PXIe and USRP receivers.

Section 4.4 presents Hybrid Cross-Receiver model development and shows MDA/ML and

GRLVQI Device Classification performance results for full-dimensional fingerprints while

Section 4.5 compares quantitative DRA Device Classification results for MDA/ML and

GRLVQI models.
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4.1 Classification Model Development

The classification model for single-receiver assessment was developed using PXIe

and USRP collections seperately. Specifically, a number of Synchronization Header Re-

sponse (SHR) from ZigBee emissions from each receiver were split into Training (NS HR

= 300) and Testing (NS HR = 300) for NCl = 6 classes. Further, a given number of noise

realizations were like-filtered and used for Monte Carlo simulation. The total of NIR used

for Monte Carlo simulation for each device included:

NIR = (NS HR = 600) × (NNz = 15) = 9000 Independent Realizations.

Of this total, NIR = 4500 independent realizations for each device were used for

“Training,” to develop the model via projection (MDA/ML) and with prototype vectors

(GRLVQI) as described in Section 3.5.1 and Section 3.5.2. The remaining NIR = 4500

were set aside for “Testing,” and assessing Device Classification.

4.2 Single Receiver Classification: Full-Dimensional (MDA/ML and GRLVQI)

Both classification methods were used for full-dimensional Device Classification where

in this case, NF = 297. This was derived from the fact that each SHR was described by

three instantaneous responses (a = amplitude, φ = phase, f = frequency), each of which

were in turn described by three statistics (σ2 = variance, γ = skewness, κ = kurtosis).

Further, each SHR divided into a fixed NR = 32 subregions across the entire SHR. The

statistics of each response were taken withinin each subregion resulting in a total of:

NFullFeat = (a, φ, f) × (σ2, γ, κ) × (NR+1 = 33) = NF = 297. (4.1)

Each RF-DNA fingerprint used for either model development of classification thus

contains NF = 297. Classification was performed on both PXIe and USRP using both
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MDA/ML and GRLVQI. Fig. 4.1 shows full-dimensional classification performance for

fingerprints used for Testing. This was done for S NR∈[0 24] dB, keeping in context of

[30]. The performance of each device at each S NR is shown as well as the cross-device av-

erage performance for all devices noted as “Average.” A desired benchmark of %C=90%

was set for easy comparison of full-dimensional and DRA performance. It can be seen in

Fig. 4.1 that while it requires a range of S NR∈[8.5 24] dB to do so, each device as well as

their average achieves the benchmark for both receivers and both methods.

With the baseline for full-dimensional classification established, the remainder of

this paper will drop device-specific comparison and provide analysis only on the “Cross-

Device Average” performance of all given devices. Fig. 4.2 shows the same classification

performance as Fig. 4.1 with the devices removed, leaving only the cross-device average for

each receiver and method for comparison. Table. 4.1 provides a quick-reference chart for

Fig. 4.2, showing the S NR value at which each cross-device average achieves the arbitrary

%C=90% benchmark. When averaging performance for each individual receiver across

both methods, it can be seen that the higher end PXIe receiver clearly outperforms the lower

end USRP receiver by S NR ≈ 4.9 dB. Additionally, GRLVQI, when averaged across both

receivers, performs consistently poorer, requiring S NR ≈ 2.0 dB gain to match MDA/ML

performance.

4.3 Single Receiver Classification: DRA Performance (GRLVQI)

Due to the nature in which it is calculated, MDA/ML does not allow for DRA to

be performed as it does not provide relevance-ranking values for specific features as

does GRLVQI. Refering back to GRLVQI performance in Table. 4.1, PXIe achieved the

%C=90% benchmark at S NR ≈ 12.0 dB and USRP at S NR ≈ 18.0 dB. It is from these

two S NR values that DRA was performed respectively for each receiver.
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Figure 4.1: Full-dimensional (NF = 297) classification comparing PXIe and USRP using

both MDA/ML and GRLVQI processes for NCl = 6. This shows all device averages as well

as the aggregated cross-device average

4.3.1 Quantitative DRA Performance.

Quantitative DRA was first performed in order to see how far of a reduction in features

the model could be developed with before Testing performance suffered signifigantly.
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Figure 4.2: Full-dimensional (NF = 297) Cross-Device Averages for both receivers and

both classifiers.

Table 4.1: Full-dimensional (NF = 297) Cross-Device Average Benchmark Performance

Comparison.
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Signifigant degradaded performance is defined as a shift in S NR at which meeting the

%C=90% benchmark either requires more gain (positive dB) from the full-dimensional

case, or where the benchmark is never achieved for S NR∈[0 24] dB. Refering to Section

4.2 where each fingerprint is made up of three responses (a, φ, f ), each providing NF

= 99 features, quantitative DRA began with NF = 99. DRA was subsequently repeated

over all S NR values as before, reducing by 33% first to ensure performance was not

degraded. It was then repeated with increased % reduction each time until performance

for either PXIe or PXIe began to suffer. Overall, quantitative DRA was performed for

(NF = 5, 10, 33, 66 and 99) features. Fig. 4.3 shows both receivers’ cross-device average

for the full-dimensional feature-set as well as each NF DRA. It is observed that as in

full-dimensional analysis in Section 4.2, high-value PXIe outperforms low-value USRP as

DRA is increased and NF is decreased. PXIe in fact consistently achieves the %C=90%

benchmark at the full-dimensional prescribed S NR ≈ 12.0 dB for all except NF = 5. PXIe

does however, unlike USRP, always achieve the benchmark overall. At NF = 10 features,

USRP performance begins to suffer, requiring an additional gain of S NR ≈ 6.0 dB. It then

quickly degrades to where the benchmark isn’t even achieved at NF = 5 features.

4.3.2 Qualitative DRA Performance.

Qualitative DRA, describing features by their signal responses (a, φ, f ) was then

performed on both receivers using GRLVQI. Previous research [9] has suggested that

unique RF-DNA signatures of ZigBee devices tend to be easier distinguished when looking

at the phase (φ) features of the SHR. Response-specific DRA was performed such that NF

= 99 each for (a, φ, f ). A model was created for each response feature-set seperately. A

comparison of these qualitative features as well as the quantitative DRA for NF = 99 is

seen in Fig. 4.4. Along with the full-dimensional feature set for each receiver from Section

4.2, it is clear that for the Atmel ZigBee devices used, (φ)-only features far outperform

a and f. Additionally, φ-only feature-set for both receivers performs just as well as full-
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Figure 4.3: Quantitative DRA (NF = 5, 10, 33, 66, 99 and 297) Cross-Device Averages

Benchmark Comparison

dimensional and quantitative DRA for NF = 99 features. It is no surprise that PXIe

continues to outperform USRP, achieving the %C=90% benchmark with an S NR ≈ 6.2

dB gain

4.4 Hybrid Cross-Receiver Classification: Full-Dimensional and Quantitative DRA

The model for the cross-receiver setup was developed in a similar fashion to the single-

receiver model described in Section 4.1. In the Hybrid Cross-Receiver setup though, the

model was developed by combining PXIe and USRP fingerprints. Again, each receiver

provided NS HR = 600 ZigBee responses, which were divided into Training and Testing.

The Hybrid Cross-Receiver model though, containing fingerprints from both receivers, was

split, with Training = NS HR = 600 and two sets (one for each receiver) of Testing = NS HR

= 300 for each of the NCl = 6 classes. As in the single-receiver model, NNz = 15 like-

filtered, independent Monte Carlo Noise realizations were added to each ZigBee response
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Figure 4.4: Quantitative DRA (NF = 99 & 297) versus Qualitative DRA (NF (a, φ, f ) = 99)

Cross-Device Averages Benchmark Comparison.

for each device to develop NIR independent realizations given by:

NIR = (NS HR = 600) × (NNz = 15) × (2 Receivers) = 18000.

The Hybrid Cross-Receiver was then, in contrast to Section 4.1, developed with NIR = 9000

independent realizations labeled “Training.” The remaining “Testing,” fingerprints were

split into three cases as summarized in Table. 4.2.

In Case 1, the “Testing” fingerprints were a combination of the reserved fingerprints

for both receivers, thus NIR = 4500 for each device. Case 2 and Case 3 tested the same

Hybrid Cross-Receiver model on only one receiver at a time. The reserved NIR = 2250 per

device for PXIe and NIR = 2250 for USRP were used as “Testing” fingerprints for Device
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Table 4.2: Case Descriptions for Hybrid Cross-Receiver Training (Model Development)

and Device Classification Testing

Classification in Case 2 and Case 3 respectively.

Both Full-Dimensional and Quantitative DRA Device Classification were performed

using both MDA/ML and GRLVQI. It is important to note though, that while DRA was

performed using MDA/ML, the relevance-ranked features used to allow this, were actually

taken from the models developed using GRLVQI. Additionally, DRA for both MDA/ML

and GRLVQI for all three cases shown in Table. 4.2, was performed at S NR = 18.0 dB.

This value was determined by recalling from Section 4.3 that the %C=90% benchmark was

achieved in the worst case, for both receivers, at S NR ≈ 18.0 dB.

4.4.1 Case 1: Hybrid Cross-Receiver Testing.

The Hybrid Cross-Receiver fingerprints used for Testing were again a combination of

reserved, interleaved PXIe and USRP fingerprints. Fig. 4.5 shows a Full-Dimensional (NF

= 297) and Quantitative DRA (NF = 5, 10, 33, 66, 99) Device Classification comparison of

MDA/ML and GRLVQI. Table. 4.3 shows clearly that for a Full-Dimensional feature-set,

MDA/ML is superior to GRLVQI, requiring nearly S NR ≈ 2.0 dB less gain to achieve

%C=90%. GRLVQI immediately surpasses MDA/ML for Quantitative DRA, providing a

S NR ≈ 3.5 dB gain for NF = 99. Subsequent MDA/ML DRA performance fails to even
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meet the %C=90% benchmark as GRLVQI DRA remains mostly consistent even as NF

decreases.

Figure 4.5: Case 1: Full-Dimensional (NF = 297) and Quantitative DRA (NF =

5, 10, 33, 66, 99) Device Classification using Hybrid Cross-Receiver model and Hybrid

Cross-Receiver testing.

Table 4.3: Case 1: GRLVQI “Gain” relative to MDA/ML. “X” indicates an incalculable

value given the %C=90% benchmark is never achieved within S NR∈[0 24] dB.
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4.4.2 Case 2: PXIe Only Testing.

Fingerprints used for Case 2 Testing were entirely from PXIe fingerprints held out

of model development. Fig. 4.6 compares Full-Dimensional (NF = 297) and Quantitative

DRA (NF = 5, 10, 33, 66, 99) Device Classification, again for MDA/ML and GRLVQI.

Table. 4.4 show that while MDA/ML initially is marginally better when running Full-

Dimensional features, GRLVQI performance remains consistent as NF decreases and far

outperforms MDA/ML. It is noted also, that unlike in Case 1, MDA/ML performance on

its own is much better, meeting the %C=90% benchmark for all but NF = 5.

Figure 4.6: Case 2: Full-Dimensional (NF = 297) and Quantitative DRA (NF =

5, 10, 33, 66, 99) Device Classification using Hybrid Cross-Receiver model and PXIe only

testing.

4.4.3 Case 3: USRP Only Testing.

Case 3 Testing fingerprints are comprised of only USRP fingerprints held out of model

development. Fig. 4.7 compares Full-Dimensional (NF = 297) and Quantitative DRA (NF
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Table 4.4: Case 2: GRLVQI “Gain” relative to MDA/ML. “X” indicates an incalculable

value given the %C=90% benchmark is never achieved within S NR∈[0 24] dB.

= 5, 10, 33, 66, 99) Device Classification, using both classification methods. It can be seen

from Table. 4.5 that the Hybrid Cross-Receiver model is unsuitable for performing Device

Classification with fingerprints only from the lower end USRP receiver. Both MDA/ML

and GRLVQI fail to achieve the %C=90% benchmark even with the Full-Dimensional

feature-set. While both methods perform poorly, GRLVQI performance is still measurably

better as it stays relatively consistent as NF decreases.

Table 4.5: Case 3: GRLVQI “Gain” relative to MDA/ML. “X” indicates an incalculable

value given the %C=90% benchmark is never achieved within S NR∈[0 24] dB.

53



Figure 4.7: Case 3: Full-Dimensional (NF = 297) and Quantitative DRA (NF =

5, 10, 33, 66, 99) Device Classification using Hybrid Cross-Receiver model and USRP only

testing.
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V. Conclusion

This chapter provides a summary of reseach performed, findings and contributions to

the Radio Frequency Distinct Native Attribute (RF-DNA) fingeprinting process, and

recommendations for follow-on research.

5.1 Summary

ZigBee-based networks are an affordable, widely-used option for accomplishing a

multitide of tasks within Wireless Personal Area Network (WPAN) applications. Due to

their low energy requirements, commercial availability, and low implementation complex-

ity, ZigBee WPANs are found in many buisnesses, hospitals, and homes. They are also

used in very important applications for Industrial Control System (ICS) automation, en-

ergy management, and by the military for location and positioning [10]. These sensors

are becoming increasingly exploited and the systems they are designed to protect remain

vulnerable to malicous attacks such as spoofing, denial of service, and key sniffing. These

attacks aim to gain unauthorized access by spoofing the bit level credentials required to

enter a secure network.

The security of ZigBee systems must be increased to prevent unauthorized persons

from entering networks and gaining access to critical information or control of critical

systems or infrastructure. One method for doing this is by exploiting known behavior and

RF fingerprint signature for known network devices. From this collection, an Authorized

and Unauthorized list can be created that upon request to enter a network, a device must

submit its bit-level credentials and be verified prior to being granted access. One method

considered here is RF-DNA fingerprinting, which provides an added level of security by

examining the actual physical waveform features emitted by a device. This provides a way
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to single out a device and prevent something as simple as changing bit level credentials, or

spoofing a Media Access Control (MAC) address and entering a network.

5.2 Findings and Contributions

This research expanded the capabilities of AFIT’s RF-DNA fingerprinting process.

Specifically, earlier work in [9] was expanded with and knowledge of ZigBee device behav-

ior increased by introducting and investigating RF-DNA fingerprinting performance using

two new receivers and a new set of devices. Accurate comparisons between two different

classification methods, Multiple Discriminant Analysis, Maximum Likelihood (MDA/ML)

and Generalized Relevance Learning Vector Quantization-Improved (GRLVQI), were made

for both full-dimensional and Dimensional Reduction Analysis (DRA) (quantitative and

qualitative) feature-sets. Finally, a Hybrid Cross-Receiver model for Device Classification

was introduced and a first-ever comparison made using a model developed with RF-DNA

fingerprints from both a high-value PCI Extension for Instrumentation Express (PXIe) re-

ceiver and low-value Universal Software Radio Peripheral (USRP) receiver; both receivers

are commercial products manufactured by National Instruments (NI).

5.2.1 Single Receiver Assessment.

Full-dimensional Device Classification was performed with both receivers using MDA/ML

and GRLVQI methods. Regardless of the receiver, MDA/ML consistently dominated GRLVQI,

with the latter requiring an average S NR ≈ 2.0 dB increase in gain to match performance.

When averaging across classification methods however, the high-end PXIe receiver outper-

formed the low-end USRP receiver, requiring S NR ≈ 5.1 dB less to reach the arbitrary

%C=90% benchmark.

Quantitative DRA Device Classification, again only performed using GRLVQI, exhib-

ited a notable difference in performance between PXIe and USRP. While PXIe achieved

%C=90% at S NR ≈ 12.0 dB consistently, for NF∈[10 297], USRP performance suffered
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and failed to meet the benchmark for NF ≤ 10. Qualitative DRA using NF = 99 features

proved that regardless of the receiver used, the Phz-only feature set far outperformed the

Frq-only and Amp-only feature sets. In fact, when compared to quantitative DRA perfor-

mance using the top-ranked NF = 99 features (combination of Amp, Phz, and Frq features)

for both receivers,

%CFD ≈ %C99Qnt ≈ %C99Phz > %C99Frq >> %C99Amp,

where %CFD is the average correct classification using the full-dimensional (FD) feature

set. Finally, on a comparison of receiver-only performance, regardless of classification

method or feature-set, high-value PXIe outpaced performance of low-value USRP by

S NR ≈ 6.0 dB.

5.2.2 Hybrid Receiver Assessment.

For “hybrid” receiver assessment, the MDA/ML and GRLVQI models were developed

using fingerprints from both receivers for both full-dimensional and Quantitative DRA

Device Classification. Three specific cases were examined where the Testing fingerprint

set included: 1) a hybrid combination of both PXIe and USRP fingerprints, 2) PXIe-only

fingerprints, and 3) USRP-only fingerprints.

Case 1: “Hybrid Cross-Receiver” (PXIe and USRP)

When Testing fingerprints were comprised of both receivers (Hybrid Cross-

Receiver), %C performance was mixed. While both classification methods met

the %C=90% benchmark for full-dimensional features, MDA/ML %C performance

immediately dropped off for NF < 99. Although MDA/ML was the clear winner for

full-dimensional classification, edging out GRLVQI by S NR ≈ 2.3 dB less required

gain, subsequent reduction of NF favored GRLVQI by S NR ≈ 3.5 dB less required

gain than that of MDA/ML to meet %C=90%. In fact, when NF ≤ 66, MDA/ML

failed to achieve the %C=90% benchmark over the specified S NR∈[0 24] dB range.
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Case 2: PXIe Only Testing

Utilizing only PXIe fingerprints for Testing greatly increased %C performance for

both full-dimensional and DRA feature sets using MDA/ML and GRLVQI. While

MDA/ML performed better for full-dimensional classification, when averaged across

calcuable values (NF = 10, 33, 66, 99), GRLVQI required S NR ≈ 3.27 dB less gain

to match MDA/ML %C=90% benchmark performance. The Hybrid Cross-Receiver

model is well-suited for use soley with the PXIe receiver.

Case 3: USRP Only Testing

Utilizing only USRP fingerprints for Testing with full-dimensional and DRA feature

sets, regardless of classification method, failed to meet the %C=90% benchmark over

the S NR∈[0 24] dB range. The Hybrid Cross-Receiver model is deemed unsuitable

for use soley with the USRP receiver.

Overall when comparing classification methods, as in the single-receiver assessment,

MDA/ML outperformed GRLVQI for a full-dimensional feature-set. Averaged among

Case 1 and Case 2 (Case 3 full-dimensional analysis failed to achieve %C=90% benchmark

over the S NR∈[0 24] dB range), GRLVQI required an additional S NR ≈ 1.6 dB to match

MDA/ML %C performance. Quantitative DRA performance favored GRLVQI though,

providing relatively consistent %C over S NR∈[0 24] dB for NF > 10. Again, when

averaged across calcuable values for Case 1 and Case 2, MDA/ML required S NR ≈ 3.32

dB additional gain to match GRLVQI %C=90% benchmark performance.

5.3 Recommendations for Future Research

This research has shown that a high-value receiver (PXIe) generally provides better

classification performance than a lower-valued receiver (USRP). Further, it was shown that

by combining RF-DNA fingerprints from high and low value receivers, a Hybrid Cross-

Receiver model can be developed and when utilized properly, provide classification per-
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formance results consistent with models developed solely from fingerprints for a single

receiver. This work is not complete and further benefit could be realized by investigating:

1. Alternative Classifiers - There are numerous other classifiers already in existence.

Device Classification should be investigated further by developing models and

performing classification with these alternative classifiers. Results varied in this

research, based mostly off of the classification method used and the NF chosen to

perform classification with. Choosing a different classifier other than MDA/ML or

GRLVQI may provide a single method that is the clear winner, outperforming all

other classifiers regardless of whether Full-Dimensional or DRA is used.

2. Different RF-DNA Features - There are endless possiblities of how to define the

features that are used to describe each RF-DNA fingerprint. Further work should be

performed to change the feature sets that are used for classification. Specifically

alternatives can include changing the size and number of subregions, developing

models that perform quantitative DRA within a specified time domain instantaneous

signal response (φ-only for example), and performing fingerprint generation using

different statistical metrics or combinations thereof. All these alternatives may

provide a different set of features that can more consistently meet or exceed

%C=90% at a lower dB value.

3. Alternative (non-ZigBee) Signals - The ZigBee protocol is a very small portion of

the mass of existing RF signals capable of performing device classification on. The

comparison of high versus low value receivers as well as creation of a Hybrid Cross-

Receiver may be found to be more suitable if performing Device Classification on

any of these other non-ZigBee signals.
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4. Different devices within the ZigBee protocol - The Atmel AT86RF230 is but one

ZigBee device capable of being researched in terms of its signal responses. As

the ZigBee protocol is relatively inexpensive and widely used in a myriad of

applications, new devices will come to the forefront, and spoofing will remain a

concern. Investigating alternative devices with the same receivers will help to further

create a known pool of the behavior of all devices running the ZigBee protocol. This

information could be used to heighten security within critical networks that rely on

ZigBee every day.
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